Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
BMC Pulm Med ; 22(1): 8, 2022 Jan 04.
Article in English | MEDLINE | ID: covidwho-2009383

ABSTRACT

BACKGROUND: Pulmonary blastoma (PB) comprises a rare heterogeneous group of lung tumours typically containing immature epithelial and mesenchymal structures that imitate the embryonic lung tissue and extremely rarely occurs during pregnancy. Although cough and haemoptysis are the most common PB symptoms, they usually indicate other serious pregnancy-related complications. CASE PRESENTATION: The article presents the unusual case of a 22-year-old pregnant woman diagnosed with PB during pregnancy. CONCLUSIONS: PB is characterized by poor prognosis and patients' outcome relies on a rapid diagnosis. Surgery remains the most common and effective treatment. Due to the extreme rarity, the literature contains only single mentions of PB in pregnancy, thus its impact on the course of pregnancy and the developing fetus remains unknown.


Subject(s)
Lung Neoplasms/diagnosis , Pulmonary Blastoma/diagnosis , Cesarean Section , Chemotherapy, Adjuvant/methods , Female , Humans , Infant, Newborn , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Male , Pregnancy , Pulmonary Blastoma/drug therapy , Pulmonary Blastoma/pathology , Pulmonary Blastoma/surgery , Treatment Outcome , Young Adult
2.
Medicine (Baltimore) ; 100(43): e27586, 2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1494091

ABSTRACT

BACKGROUND: Corona virus disease 2019 (COVID-19) is spreading fast and it brings great pressure to the social economy. Many reports revealed that ginseng can develop immunity for respiratory disease, but there is no evidence to prove its effects on COVID-19. This protocol of systematic review and meta-analysis will clarify the safety and effectiveness of ginseng adjuvant therapy on COVID-19 patients. METHODS: Different databases (Web of Science, Cochrane Library, PubMed, Chinese Biomedical Literature Database, Chinese National Knowledge Infrastructure, Chinese Scientific Journal Database, Wan fang Database, ClinicalTrials, World Health Organization Trials, and Chinese Clinical Trial Registry) will be retrieved to search related articles according to pre-defined inclusion and exclusion criteria. Clinical recovery time and effective rates will be assessed as the primary outcomes and any changes of patient's condition will be considered as the secondary outcomes. Subgroup analysis and sensitivity analysis will be conducted to explore sources of heterogeneity. Endnote X9.3 will be used to manage data screening. The statistical analysis will be completed by RevMan5.3 and Stata/SE 15.1 software. RESULTS: This study will assess the effects and safety for ginseng adjuvant therapy on COVID-19 patients. CONCLUSION: The discussion will be considered to determine whether sufficient evidence exists to prove the effects of ginseng adjuvant therapy for COVID-19 patients. SYSTEMATIC REVIEW REGISTRATION: PROSPERO (ID: CRD42021277843).


Subject(s)
COVID-19/therapy , Chemotherapy, Adjuvant/methods , Panax , Humans , Randomized Controlled Trials as Topic , Research Design , SARS-CoV-2
3.
Cell Cycle ; 20(22): 2321-2336, 2021 11.
Article in English | MEDLINE | ID: covidwho-1442952

ABSTRACT

Multifunctional nature of phytochemicals and their chemical diversity has attracted attention to develop leads originated from nature to fight COVID-19. Pharmacological activities of chelerythrine and its congeners have been studied and reported in the literature. This compound simultaneously has two key therapeutic effects for the treatment of COVID-19, antiviral and anti-inflammatory activities. Chelerythrine can prevent hyper-inflammatory immune response through regulating critical signaling pathways involved in SARS-CoV-2 infection, such as alteration in Nrf2, NF-κB, and p38 MAPK activities. In addition, chelerythrine has a strong protein kinase C-α/-ß inhibitory activity suitable for cerebral vasospasm prevention and eryptosis reduction, as well as beneficial effects in suppressing pulmonary inflammation and fibrosis. In terms of antiviral activity, chelerythrine can fight with SARS-CoV-2 through various mechanisms, such as direct-acting mechanism, viral RNA-intercalation, and regulation of host-based antiviral targets. Although chelerythrine is toxic in vitro, the in vivo toxicity is significantly reduced due to its structural conversion to alkanolamine. Its multifunctional action makes chelerythrine a prominent compound for the treatment of COVID-19. Considering precautions related to the toxicity at higher doses, it is expected that this compound is useful in combination with proper antivirals to reduce the severity of COVID-19 symptoms.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antiviral Agents/administration & dosage , Benzophenanthridines/administration & dosage , COVID-19 Drug Treatment , Chemotherapy, Adjuvant/methods , SARS-CoV-2/drug effects , Animals , COVID-19/metabolism , COVID-19/pathology , Chemotherapy, Adjuvant/trends , Drug Therapy, Combination , Humans , SARS-CoV-2/physiology
4.
Biomed Pharmacother ; 143: 112228, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1432983

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is a respiratory illness associated with high mortality, has been classified as a pandemic. The major obstacles for the clinicians to contain the disease are limited information availability, difficulty in disease diagnosis, predicting disease prognosis, and lack of disease monitoring tools. Additionally, the lack of valid therapies has further contributed to the difficulties in containing the pandemic. Recent studies have reported that the dysregulation of the immune system leads to an ineffective antiviral response and promotes pathological immune response, which manifests as ARDS, myocarditis, and hepatitis. In this study, a novel platform has been described for disseminating information to physicians for the diagnosis and monitoring of patients with COVID-19. An adjuvant approach using compounds that can potentiate antiviral immune response and mitigate COVID-19-induced immune-mediated target organ damage has been presented. A prolonged beneficial effect is achieved by implementing algorithm-based individualized variability measures in the treatment regimen.


Subject(s)
Antiviral Agents/immunology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/diagnosis , Chemotherapy, Adjuvant/methods , Medical Informatics/methods , Algorithms , COVID-19/immunology , Disease Management , Disease Progression , Gastrointestinal Tract/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Severity of Illness Index
5.
BMJ ; 373: n1038, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1223582

ABSTRACT

OBJECTIVE: To investigate the use of repurposed and adjuvant drugs in patients admitted to hospital with covid-19 across three continents. DESIGN: Multinational network cohort study. SETTING: Hospital electronic health records from the United States, Spain, and China, and nationwide claims data from South Korea. PARTICIPANTS: 303 264 patients admitted to hospital with covid-19 from January 2020 to December 2020. MAIN OUTCOME MEASURES: Prescriptions or dispensations of any drug on or 30 days after the date of hospital admission for covid-19. RESULTS: Of the 303 264 patients included, 290 131 were from the US, 7599 from South Korea, 5230 from Spain, and 304 from China. 3455 drugs were identified. Common repurposed drugs were hydroxychloroquine (used in from <5 (<2%) patients in China to 2165 (85.1%) in Spain), azithromycin (from 15 (4.9%) in China to 1473 (57.9%) in Spain), combined lopinavir and ritonavir (from 156 (<2%) in the VA-OMOP US to 2,652 (34.9%) in South Korea and 1285 (50.5%) in Spain), and umifenovir (0% in the US, South Korea, and Spain and 238 (78.3%) in China). Use of adjunctive drugs varied greatly, with the five most used treatments being enoxaparin, fluoroquinolones, ceftriaxone, vitamin D, and corticosteroids. Hydroxychloroquine use increased rapidly from March to April 2020 but declined steeply in May to June and remained low for the rest of the year. The use of dexamethasone and corticosteroids increased steadily during 2020. CONCLUSIONS: Multiple drugs were used in the first few months of the covid-19 pandemic, with substantial geographical and temporal variation. Hydroxychloroquine, azithromycin, lopinavir-ritonavir, and umifenovir (in China only) were the most prescribed repurposed drugs. Antithrombotics, antibiotics, H2 receptor antagonists, and corticosteroids were often used as adjunctive treatments. Research is needed on the comparative risk and benefit of these treatments in the management of covid-19.


Subject(s)
COVID-19 Drug Treatment , Chemotherapy, Adjuvant/methods , Drug Repositioning/methods , Administrative Claims, Healthcare/statistics & numerical data , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Azithromycin/therapeutic use , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Ceftriaxone/therapeutic use , Child , Child, Preschool , China/epidemiology , Cohort Studies , Drug Combinations , Electronic Health Records/statistics & numerical data , Enoxaparin/therapeutic use , Female , Fluoroquinolones/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Infant , Infant, Newborn , Inpatients , Lopinavir/therapeutic use , Male , Middle Aged , Republic of Korea/epidemiology , Ritonavir/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Safety , Spain/epidemiology , Treatment Outcome , United States/epidemiology , Vitamin D/therapeutic use , Young Adult
6.
Drug Dev Res ; 82(4): 469-473, 2021 06.
Article in English | MEDLINE | ID: covidwho-1047152

ABSTRACT

Despite vigorous efforts, the COVID-19 pandemic continues to take a toll on the global health. The contemporary therapeutic regime focused on the viral spike proteins, viral 3CL protease enzyme, immunomodulation, inhibition of viral replication, and providing a symptomatic relief encouraged the repurposing of drugs to meet the urgency of treatment. Similarly, the representative drugs that proved beneficial to alleviate SARS-CoV-1, MERS-CoV, HIV, ZIKV, H1N1, and malarial infection in the past presented a sturdy candidature for ameliorating the COVID-19 therapeutic doctrine. However, most of the deliberations for developing effective pharmaceuticals proved inconsequential, thereby encouraging the identification of new pathways, and novel pharmaceuticals for capping the COVID-19 infection. The COVID-19 contagion encompasses a burst release of the cytokines that increase the severity of the infection mainly due to heightened immunopathogenicity. The pro-inflammatory metabolites, COX-2, cPLA2, and 5-LOX enzymes involved in their generation, and the substrates that instigate the origination of the innate inflammatory response therefore play an important role in intensifying and worsening of the tissue morbidity related to the coronavirus infection. The deployment of representative drugs for inhibiting these overexpressed immunogenic pathways in the tissues invaded by coronaviruses has been a matter of debate since the inception of the pandemic. The effectiveness of NSAIDs such as Aspirin, Indomethacin, Diclofenac, and Celecoxib in COVID-19 coagulopathy, discouraging the SARS viral replication, the inflammasome deactivation, and synergistic inhibition of H5N1 viral infection with representative antiviral drugs respectively, have provided a silver lining in adjuvant COVID-19 therapy. Since the anti-inflammatory NSAIDs and COXIBs mainly function by reversing the COX-2 overexpression to modulate the overproduction of pro-inflammatory cytokines and chemokines, these drugs present a robust treatment option for COVID-19 infection. This commentary succinctly highlights the various claims that support the status of immunomodulatory NSAIDs, and COXIBs in the adjuvant COVID-19 therapy.


Subject(s)
COVID-19/enzymology , Immunologic Factors/therapeutic use , Prostaglandin-Endoperoxide Synthases/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Chemotherapy, Adjuvant/methods , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Humans , Immunologic Factors/pharmacology , Prostaglandin-Endoperoxide Synthases/drug effects , Prostaglandin-Endoperoxide Synthases/physiology , COVID-19 Drug Treatment
8.
Pharmacol Ther ; 219: 107703, 2021 03.
Article in English | MEDLINE | ID: covidwho-813821

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has currently led to a global pandemic with millions of confirmed and increasing cases around the world. The novel SARS-CoV-2 not only affects the lungs causing severe acute respiratory dysfunction but also leads to significant dysfunction in multiple organs and physiological systems including the cardiovascular system. A plethora of studies have shown the viral infection triggers an exaggerated immune response, hypercoagulation and oxidative stress, which contribute significantly to poor cardiovascular outcomes observed in COVID-19 patients. To date, there are no approved vaccines or therapies for COVID-19. Accordingly, cardiovascular protective and supportive therapies are urgent and necessary to the overall prognosis of COVID-19 patients. Accumulating literature has demonstrated the beneficial effects of n-3 polyunsaturated fatty acids (n-3 PUFA) toward the cardiovascular system, which include ameliorating uncontrolled inflammatory reactions, reduced oxidative stress and mitigating coagulopathy. Moreover, it has been demonstrated the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are precursors to a group of potent bioactive lipid mediators, generated endogenously, which mediate many of the beneficial effects attributed to their parent compounds. Considering the favorable safety profile for n-3 PUFAs and their metabolites, it is reasonable to consider n-3 PUFAs as potential adjuvant therapies for the clinical management of COVID-19 patients. In this article, we provide an overview of the pathogenesis of cardiovascular complications secondary to COVID-19 and focus on the mechanisms that may contribute to the likely benefits of n-3 PUFAs and their metabolites.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Fatty Acids, Omega-3/administration & dosage , Animals , COVID-19/diagnosis , Cardiovascular Diseases/diagnosis , Chemotherapy, Adjuvant/methods , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Humans , Oxidative Stress/drug effects , Oxidative Stress/physiology , Randomized Controlled Trials as Topic/methods
SELECTION OF CITATIONS
SEARCH DETAIL